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Abstract. Assume ZF+AD. The following two continuity results for functions on certain subsets of P(ω1)

and P(ω2) will be shown:
For every ε < ω1 and function Φ : [ω1]ε → ω1, there is a club C ⊆ ω1 and a ζ < ε so that for all

f, g ∈ [C]ε∗, if f � ζ = g � ζ and sup(f) = sup(g), then Φ(f) = Φ(g).

For every ε < ω2 and function Φ : [ω2]ε → ω2, there is an ω-club C ⊆ ω2 and a ζ < ε so that for all
f, g ∈ [C]ε∗, if f � ζ = g � ζ and sup(f) = sup(g), then Φ(f) = Φ(g).

The previous two continuity results will be used to distinguish cardinals below P(ω2): |[ω1]ω | <
|[ω1]<ω1 |. |[ω2]ω | < |ω2]<ω1 | < |[ω2]ω1 | < |[ω2]<ω2 |. ¬(|[ω1]<ω1 | ≤ [ω2]ω |). ¬(|[ω1]ω1 | ≤ ([ω2]<ω1 |).

[ω1]ω has the Jónsson property: That is, for every Φ : <ω([ω1]ω) → [ω1]ω , there is an X ⊆ [ω1]ω with

|X| = |[ω1]ω | so that Φ[<ωX] 6= [ω1]ω .

1. Introduction

The axiom of determinacy, AD, asserts that every two player game where each player takes turns playing a
natural number has a winning strategy for one of the two players. The axiom has proved to be a very robust
general framework for extending results from classical descriptive set theory and for providing structure to
sets which are surjective images of R.

Let A and B be two sets. If there is an injection from A into B then one write |A| ≤ |B|. Denote |A| < |B|
if |A| ≤ |B| but ¬(|B| ≤ |A|). If there is a bijection between A and B, then one writes |A| = |B|. By the
Cantor-Schröder-Bernstein theorem (proved in ZF), |A| = |B| if and only |A| ≤ |B| and |B| ≤ |A|. In the
absence of choice, the cardinality of A, referred to as |A|, is the equivalence class of A under the bijection
relation.

One classical structural result of determinacy is that every subset of R is either countable or contains a
perfect set. Hence |R| is the only uncountable cardinal less than or equal to |R| assuming AD.

Another classical descriptive set theoretic result assuming AD is that every function Φ : R → R is
continuous on a comeager set. As customary in descriptive set theory, R is identified with ωω, which is
the collection of functions from ω into ω. Continuity here can be interpreted using the following example:
Φ(f)(0), the first bit of Φ(f), a priori could require global information about all of f . Continuity on a
comeager set implies that if f belongs to this comeager set, then Φ(f)(0) only depends on a local behavior
of f . That is, there is some n ∈ ω so that for all g which belong to this appropriate comeager set, if
g � n = f � n, then Φ(g)(0) = Φ(f)(0).

This paper seeks to investigate the continuity phenomenon for functions defined on certain subsets of
P(ω1) and P(ω2). These continuity properties will then be used to distinguish several very concrete
cardinals below |P(ω1)| and |P(ω2)| under AD.

Specifically, this paper will be interested in the collection of subsets of ω1 and ω2 which have cardinality less
than ω1 and ω2, respectively. Identifying subsets of ω1 or ω2 by their increasing enumeration, one will prefer
to work with the collection of increasing sequences through ω1 and ω2 (primarily because the partition
properties are formulated for these sets). If X and Y are wellordered set, then [X]Y is the collection of
functions f : Y → X which are increasing with respect to the two orderings. This paper will be particular
interested in [ω1]ω, [ω1]<ω1 , [ω2]ω, [ω2]ω1 and [ω1]<ω2 .

This paper will study the short functions on ω1 and ω2. The combinatorics of full functions on ω1 is
investigated in [4], and the techniques there are quite different than what is used here: for instance, the
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generic coding at ω1, category arguments, Moschovakis coding lemma, the good coding system for ω1ω1, and
projective uniformization are used. Chan and Jackson [4] showed that for every function Φ : [ω1]ω1 → ω1,
there is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗ , there exists an α < ω1 so that for all g ∈ [C]ω1
∗ , if

g � α = f � α, then Φ(f) = Φ(g). ([C]ω1
∗ is the collection of increasing functions from ω1 into C of the

correct type, which will be defined in Definition 2.1.) Chan, Jackson, and Trang [4] also showed an even
stronger version that for every function Φ : [ω1]ω1 → ω1ω1, there is a club C ⊆ ω1 so that for all f ∈ [C]ω1

∗
and β < ω1, there exists an α < ω1 so that for all g ∈ [C]ω1

∗ , if g � α = f � β, Φ(g) � β = Φ(f) � β. Note
that this continuity property is just the standard notion of continuity where the domain and range space
are given the topology generated by set of the form Nσ = {f ∈ [ω1]ω1 : σ ⊆ f} where σ ∈ [ω1]<ω1 (or
Nσ = {f ∈ ω1ω1 : σ ⊆ f} where σ ∈ <ω1ω1) as a basis.

As a consequence of Martin’s result that ω1 is a strong partition cardinal, the filter µω1 on [ω1]ω1 defined
by X ∈ µω1 if and only if there exists a club C ⊆ ω1 so that [C]ω1

∗ ⊆ X is a countably complete measure
on ω1. Thus in the above two continuity results, the notion of largeness given by comeagerness for classical
continuity on R is replaced with largeness on [ω1]ω1 given by the ultrafilter µω1 . The continuity property
mentioned in the previous paragraph can be used to show that if 〈Xα : α < ω1〉 is a sequence of subsets of
[ω1]ω1 so that [ω1]ω1 =

⋃
α<ω1

Xα, then there is an α < ω1 such that |Xα| = |[ω1]ω1 |. This result can then be

used to show that |[ω1]<ω1 | < |[ω1]ω1 |. (It should be mentioned that there is a more set theoretic argument
involving the measurability of ω1 and a certain inner model of ZFC. See the argument in Fact 3.30.)

Returning to the subject of this article: One is concerned with continuity phenomenon for functions
Φ : [ω1]ε → ω1 where ε < ω1 is countable. Again the partition measure µε on [ω1]ε will serve as the notion
of largeness for subsets of [ω1]ε. However, one can not have continuity in the sense described above for the

full functions, [ω1]ω1 . Recall that ACR
ω implies that ω1 is regular. Consider the function Ψ : [ω1]ω → ω1

defined by Ψ(f) = sup(f). Clearly, there is no n ∈ ω and no club C ⊆ ω1 so that whenever f, g ∈ [C]ω∗ ,
if f � n = g � n, then Ψ(f) = Ψ(g). However, Ψ does satisfy a particular continuity phenomenon in the
sense that Ψ(f) depend only on one piece of information, namely sup(f). That is, for any f, g ∈ [ω1]ω, if
sup(f) = sup(g), then Ψ(f) = Ψ(g). The first main result is that this is a general occurrence that holds for
any function Φ : [ω1]ε → ω1 when ε < ω1. For each f ∈ [ω1]ε and α ≤ ε, let bound(f, α) = sup{f(β) : β < α}.
Note that bound(f, 0) = 0 and bound(f, ε) = sup(f).

Theorem 2.14. Assume ZF + AD. Let ε < ω1 and Φ : [ω1]ε∗ → ω1. Then there is a decreasing se-
quence of ordinals which are less than or equal to ε, (βi : i ≤ n), with βn = 0 and a club C ⊆ ω1 so that for
any f, g ∈ [C]ε∗ with the property that bound(f, βi) = bound(g, βi) for all i ≤ n, then Φ(f) = Φ(g).

This result is a continuity property which states that for any such function Φ, Φ(f) depends only on
local behaviors of f at certain finitely many places for µε-almost all f . The following is a more coarse but
useful formulation of the above result which states that for every function Φ, there is a δ < ε so that Φ(f)
depends only on the δ-length initial segment of f and sup(f).

Theorem 2.15. Assume ZF + AD. Let ε < ω1 and Φ : [ω1]ε∗ → ω1. Then there is a δ < ε and some
club C ⊆ ω1 so that for all f, g ∈ [C]ε∗ with f � δ = g � δ and sup(f) = sup(g), Φ(f) = Φ(g).

There are two distinguished subsets of P(ω1), namely [ω1]ω and [ω1]<ω1 . One natural question is whether
these two sets are different in terms of cardinality. Woodin [14] studied the cardinals below [ω1]<ω1 under
ZF + ADR + DC. From the dichotomy results in [14], it was known to Woodin that |[ω1]ω| < |[ω1]<ω1 |.
Moreover, Woodin isolated a subset of [ω1]<ω1 called S1 defined by S1 = {f ∈ [ω1]<ω1 : sup(f) = ω

L[f ]
1 }. It

is implicit in [14] that |S1| is incomparable with [ω1]ω and hence one can concludes that |[ω1]ω| < |[ω1]<ω1 |.
The proofs of some of the main properties of S1 (assuming ZF+AD+DCR and all sets of reals have∞-Borel

codes) can be found [3]. For instance, assuming ZF + AD, one can show that |R| ≤ |S1| and ¬(ω1 ≤ |S1|).
The main property of S1 shown in [3] is that there is no injection of S1 into ωON assuming ZF + AD + DCR
and all sets of reals have ∞-Borel codes. From this, one can conclude that |R| < |S1| and ¬(|S1| ≤ |[ω1]ω|).
The argument for the main property of S1 in [3] goes roughly as follows: Suppose such an injection Φ exists.
Using ∞-Borel codes, one can find an inner model M of ZFC that “absorbs” some fragment of this injection
in a suitable sense. (This is where ∞-Borel codes are needed.) Let ζ < ωV1 be an inaccessible cardinal of

2



M . Since Coll(ω,< ζ) is countable in the real world satisfying AD, one can find a G ⊆ Coll(ω,< ζ) which
is Coll(ω,< ζ)-generic over M . One can show that G adds a g ∈ S1 such that M [G] = M [g]. Since M
“absorbs” Φ, Φ(g) ∈ M [g]. (Intuitively, this is what “absorb” means.) Since Φ is an injection, one can
argue that M [g] = M [Φ[g]]. However, Φ(g) is an ω-sequence of ordinals. By a crucial property of the Lévy
collapse, there is a ξ < ζ so that Ψ(g) ∈M [G � ξ]. Then one has that M [G] = M [g] = M [Φ(g)] = M [G � ξ].
This is impossible.

The authors know very little about the cardinal properties of S1 in the absence of ∞-Borel codes. S1 is
a set whose definition is based upon the notion of constructibility. The two sets [ω1]ω and [ω1]<ω1 are very
concrete combinatorial objects. There should be no need to employ AD+ concepts to distinguish these two
cardinals. Using the continuity properties for short functions mentioned above, one can distinguish these
two sets within ZF + AD using combinatorial argumments.

Theorem 2.16. Assume ZF + AD. |[ω1]ω| < |[ω1]<ω1 |.

Next, one will consider various subsets of P(ω2). Of particular interests are [ω2]ω, [ω2]<ω1 , [ω2]ω1 ,
[ω2]<ω2 , and [ω2]ω2 . One would like to distinguish the cardinality of these sets from each other as well as
from the cardinality of the subsets of P(ω1) considered earlier such as [ω1]ω, [ω1]<ω1 , and [ω1]ω1 .

Martin showed that ω2 is a weak partition cardinal and hence measurable. Using the same technique
mentioned above (for showing |[ω1]<ω1 | < |[ω1]ω1 |) involving using the measure and going into an appropriate
inner model of ZFC, one can show |[ω2]<ω2 | < |[ω2]ω2 | under just ZF + AD.

Similar to the study of ω1, one needs to establish the analogous continuity property for ω2.

Theorem 3.21. Assume ZF + AD. Let ε < ω2 and Φ : [ω2]ε∗ → ω2. Then there is a decreasing se-
quence of ordinals less than or equal to ε, (βi : i ≤ n), with βn = 0 and an ω-club B ⊆ ω2 so that for any
F ,G ∈ [B]ε∗ with the property that bound(F , βi) = bound(G, βi) for all i ≤ n, then Φ(F) = Φ(G).

Theorem 3.22. Assume ZF + AD. Let ε < ω2 and Φ : [ω2]ε∗ → ω2. Then there is a δ < ε and an ω-
club B ⊆ ω2 so that for all F ,G ∈ [B]ε∗ with F � δ = G � δ and sup(F) = sup(G), Φ(F) = Φ(G).

Using these continuity results, one can establish the following cardinal relations:

Theorem 3.23. Assume ZF + AD. |[ω2]ω| < |[ω2]<ω1 |.

Theorem 3.24. Assume ZF + AD. |[ω2]<ω1 | < |[ω2]ω1 |.

Theorem 3.26. Assume ZF + AD. |[ω2]ω1 | < |[ω2]<ω2 |.

It should be mentioned that these results concerning ω2 are proved in ZF + AD and the arguments
provided here are the only proofs presently known to the authors. That is, the authors do not know of an
AD+ style proof involving some analog of S1. In the proof that S1 does not inject into ωON sketched above,
one considered the forcing Coll(ω,< ζ) where ζ < ωV1 is an inaccessible cardinal of an inner model M of
ZFC. In that case, one was able to find, in the real world, a generic over M since the forcing is countable
in the real world. One may attempt to make analogs of S1 to handle results at ω2. However, the naturally
associated forcing appears to be uncountable even in the real world, and one can no longer be certain that
generics for such forcings exist in the real world.

To give a more complete picture of the relations between cardinal, one also has the following result

Theorem 3.29. Assume ZF + AD. ¬(|[ω1]<ω1 | ≤ |[ω2]ω|). Thus ¬(|[ω1]ω1 | ≤ [ω2]ω).

Recall as mentioned above, that under AD + DCR and all sets of reals have ∞-Borel codes, one has
that S1 ⊆ [ω1]<ω1 and S1 does not inject into ωON. Thus the previous theorem would follow from this
observation under AD+; however, a proof using just AD will be given here.
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Theorem 3.31. Assume ZF + AD. Then ¬(|[ω1]ω1 | ≤ |[ω2]<ω1 |).

From the result mentioned throughout the paper, one has the following diagram depicting all the cardinal
relationships between the uncountable cardinals below P(ω2) which will be discussed in this paper. An
arrow between A and B indicates |A| < |B|. All relations among these cardinals are those derivable by
compositions of the arrows on the diagram. Of course, there are other cardinals below P(ω2) which are not
on the diagram, for instance [ω1]<ω1 t [ω2]ω and [ω1]ω1 × [ω2]<ω1 . With additional determinacy assumptions
such as AD+, the set S1 can be proved to be distinct from all of these.

ω1 R

R t ω1
R× ω1

[ω1]ω
[ω1]<ω1

[ω1]ω1
ω2

R t ω2
R× ω2

[ω2]ω
[ω2]<ω1

[ω2]ω1
[ω2]<ω2

[ω2]ω2

The main technique used in this paper involves Kunen functions for ω1. Let µ be the club measure on
ω1. Using the Kunen tree analysis, one can show that for any function f : ω1 → ω1, there is a function
Ξ : ω1×ω1 → ω1 so that for µ-almost all α, f(α) < sup{Ξ(α, β) : β < α} and {Ξ(α, β) : β < α} is an ordinal
(not just a set of ordinals). This function Ξ will be called a Kunen function for f . Ξ allows for a uniform
way of selecting a representative for any g <µ f , i.e. there is a β < ω1 so that the function Ξβ : ω1 → ω1

defined by Ξβ(α) = Ξ(α, β) is µ-almost equal to g. Using these Kunen functions and sliding arguments,
Martin proved an ultrapower representation for ω2 =

∏
ω1
ω1/µ and showed the weak partition property on

ω2.
The basic facts about partition properties and Kunen functions can be found in [1]. These arguments

are well known and due to Jackson, Kunen, and Martin. (See [10], [11], and [12].) However, the article will
follow [1] which develops the minimal notation and theory necessary for the results in this paper.

The final section of this paper concerns a simple combinatorial property of sets called the Jónsson property.
Let X be a set. Let [X]n= = {f ∈ nX : (∀i < j < n)(f(i) 6= f(j))}. Let [X]<ω= =

⋃
n∈ω[X]n=. X is n-Jónsson

if and only if for every Φ : [X]n= → X, there exists a Y ⊆ X with |Y | = |X| and Φ[[Y ]n=] 6= X. X is Jónsson
if and only if for every Φ : [X]<ω= → X, there is a Y ⊆ X with |Y | = |X| and Φ[[Y ]<ω= ] 6= X.

Under AD, Kleinberg [13] showed that ωn is Jónsson for all n ∈ ω. Jackson, Ketchersid, Schlutzenberg,
and Woodin [9] showed that under ZF + AD + V = L(R) (and also ZF + AD+) that every cardinal κ < Θ is
Jónsson. Holshouser and Jackson showed that R and R× κ for κ < Θ are Jónsson. Chan [2] showed in fact
that for all ordinals κ, R× κ is Jónsson.

Define an equivalence relation E0 on ω2 by x E0 y if and only if (∃m)(∀n ≥ m)(x(n) = y(n)). The Hjorth
E0-dichotomy [8] (which generalize the E0-dichotomy of Harrington, Kechris, and Louveau [7]) shows that
E0 is the minimal cardinal (which is a surjective image of R) that does not inject into P(α) for any α < ON
under AD+. Holshouser and Jackson showed that ω2/E0 is 2-Jónsson. Chan and Meehan [6] showed that
ω2/E0 is not 3-Jónsson and hence not Jónsson.

Say an equivalence relation E on R is smooth if and only if |R/E| = |R|. If 〈Eα : α < κ〉 for some
cardinal κ be a sequence of equivalence relations on R, let

⊔
α<κ R/Eα be the disjoint union of the various

quotients. Chan and Jackson [5] showed under ZF + AD+ + V = L(P(R)), if 〈Eα : α < κ〉 (for any cardinal
κ) is a sequence of smooth equivalence relations on R with all classes countable, then

⊔
α<κ R/Eα must be

in bijection with R× κ and therefore has the Jónsson property by the result of Chan [2] mentioned above.
The final result of this paper shows [ω1]ω has the Jónsson property:

Theorem 4.12. Assume ZF + AD. [ω1]ω is Jónsson.
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2. Continuity of Short Functions on ω1

For the rest of the paper, assume ZF + AD. (Not even DCR will be implicitly assumed.)
If ε ≤ κ are ordinals, then [κ]ε is the collection of increasing functions f : ε→ κ.

Definition 2.1. ([11]) Let κ be an ordinal and ε ≤ κ. A function f : ε→ κ has uniform cofinality ω if and
only if there is a function g : ε× ω → κ with the following two properties:
(a) For all α < ε and n ∈ ω, g(α, n) < g(α, n+ 1).
(b) For all α < ε, f(α) = sup{g(α, n) : n ∈ ω}.

A function f : ε→ κ is discontinuous at α if and only if f(α) > sup{f(β) : β < α}.
A function f : ε→ κ is of the correct type if and only if f has uniform cofinality ω and f is discontinuous

everywhere.
Let A ⊆ κ, [A]ε∗ denote the collection of all increasing functions f : ε→ A of the correct type.

The collection of increasing functions and the collection of increasing functions of the correct type have
the same cardinality. In the following, one may use either sets for purpose of distinguishing cardinality.

Fact 2.2. Let κ be a cardinal. Let ε ≤ κ. [κ]ε ≈ [κ]ε∗.

Proof. Let H : κ→ κ be any increasing function of the correct type. Define Φ : [κ]ε → [κ]ε∗ by Φ(f) = H ◦f .
Then Φ is an injection. The two sets are in bijection by the Cantor-Schröder-Bernstein theorem. �

Definition 2.3. Let κ be an ordinal and ε ≤ κ. One write κ→∗ (κ)ε2 to indicate that for every P : [κ]ε∗ → 2,
there is some club C ⊆ ω1 and an i ∈ 2 so that for all f ∈ [C]ε∗, Φ(f) = i.

If κ→∗ (κ)κ2 , then one says that κ is a strong partition cardinal.
If κ→∗ (κ)ε2 for all ε < κ, then κ is said to be a weak partition cardinal.

Fact 2.4. ([1] Section 2 and 4, [13] Chapter II, [12] Theorem 7.3 and 12.2.) (Solovay) The club measure µ
on ω1 is a countably complete normal measure on ω1. (Martin) ω1 is a strong partition cardinal.

Definition 2.5. Let µ denote the club measure on ω1. For each ε ≤ ω1, let µε be a filter on [ω1]ε∗ defined
by K ∈ µε if and only if there is a club C ⊆ ω1 so that [C]ε∗ ⊆ K. Since ω1 is a strong partition cardinal,
one has that µε is a countably complete ultrafilter for all ε ≤ ω1.

If ϕ is a formula, then one write (∀∗εf)ϕ(f) to indicate that the set {f ∈ [ω1]ε∗ : ϕ(f)} ∈ µε.

Definition 2.6. ([1] Section 5) Let µ be a club measure on ω1.
Let Ξ : ω1 × ω1 → ω1. For each α < ω1, let δΞ

α = sup{Ξ(α, β) : β < α}. Let Ξα : α → δΞ
α be defined by

Ξα(β) = Ξ(α, β).
Ξ is a Kunen function for f with respect to µ if and only ifKΞ

f = {α < ω1 : f(α) ≤ δΞ
α ∧ Ξα is a surjection} ∈

µ. KΞ
f is the set of α on which Ξ provides a bounding for f .

For β < ω1, let Ξβ : ω1 → ω1 be defined by Ξβ(α) = Ξ(α, β) where α > β and 0 otherwise.

Fact 2.7. ([1] Section 5, [11] Lemma 4.1) (Kunen) For every f : ω1 → ω1, there is a Kunen function for f
with respect to µ.

Definition 2.8. Let β ≤ ε < ω1 and f ∈ [ω1]ε∗. Let bound(f, β) = sup{f(α) : α < β}, where sup(∅) is
defined to be 0.

If A ⊆ ω1 with |A| = ω1, then let enumA : ω1 → A denote the increasing enumeration of A.
Let C ⊆ ω1 be a club. Let nextωC(α) denote ωth element of C above α.

Fact 2.9. Let ε < ω1. For all Φ : [ω1]ε∗ → ω1, there exists a unique bΦ ≤ ε so that bΦ is the largest β ≤ ε so
(∀∗εf)(bound(f, β) ≤ Φ(f)).

Proof. For each β ≤ ε < ω1, let Aβ be the set of f so that β is the largest γ ≤ ε so that Φ(f) ≥ bound(f, γ).
[ω1]ε∗ =

⋃
β≤εAβ . Since µε is a countably complete ultrafilter on [ω1]ε∗, there is a bΦ so that AbΦ ∈ µε. �

Lemma 2.10. Let ε < ω1. Let Φ : [ω1]ε∗ → ω1. Then there are club subsets of ω1, C and D, so that for all
f ∈ [D]ε∗, Φ(f) < nextωC(bound(f, bΦ)).
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Proof. Let ∗ be a new symbol. Define a linear ordering L on ε ∪ {∗} by x ≺ y if and only if
(a) x, y ∈ ε and x < y
(b) x = ∗, y ∈ ε, and y ≥ bΦ

(c) x ∈ ε, y = ∗, and x < bΦ.
Note that L is a wellordering of ordertype less than ω1. If f : L → ω1 is an increasing function, then let

main(f) : ε→ ω1 be defined by main(f)(α) = f(α). Let extra(f) ∈ ω1 be defined by extra(f) = f(∗).
Define a partition P : [ω1]L∗ → 2 by P (g) = 0 ⇔ Φ(main(g)) < extra(g). By the weak partition property

of ω1, there is some C ⊆ ω1 which is homogeneous for this partition. By intersecting with an appropriate
club, one may assume that for all f ∈ [C]ε∗, bΦ is the largest γ so that Φ(f) ≥ bound(f, γ). Therefore if
bΦ < ε, Φ(f) < f(bΦ).

The claim is that C is homogeneous for P taking value 0: Let D = {α ∈ C : enumC(α) = α} which is
the club set of closure point of C. Let f ∈ D. In the case that bΦ < ε, since bound(f, bΦ) ≤ Φ(f) < f(bΦ)
and f(bΦ) ∈ D, the ωth-element of C above Φ(f) is below f(bΦ). In all cases, let g : L → C be defined
by g(α) = f(α) for all α ∈ ε and g(∗) = nextωC(Φ(f)). Using any function witnessing that f has uniform
cofinality ω, one can show that g has uniform cofinality ω. g is discontinuous everywhere. So g ∈ [C]L∗ and
Φ(main(g)) = Φ(f) < γ = extra(g). Thus P (g) = 0 and hence C must have been homogeneous for P taking
value 0. The establishes the claim.

Now suppose f ∈ [D]ε∗. In the case that bΦ < ε, since bound(f, bΦ) ≤ Φ(f) < f(bΦ) and f(bΦ) ∈ D,
nextωC(bound(f, bΦ)) < f(bΦ). In all cases, let g : L → C be defined by g(α) = f(α) if α < ε and
g(∗) = nextωC(bound(f, bΦ)). As before, g is a function of the correct type in [C]L∗ . P (g) = 0 implies that
Φ(f) = Φ(main(g)) < extra(g) = nextωC(bound(f, bΦ)). This completes the proof. �

Lemma 2.11. Let ε < ω1 and Φ : [ω1]ε∗ → ω1 be such that bΦ 6= 0. Then there is some club D ⊆ ω1,
some Kunen function Ξ : ω1 × ω1 → ω1, and some Φ′ : [ω1]ε∗ → ω1 so that for all f ∈ [D]ω1

∗ , Φ(f) =
Ξ(bound(f, bΦ),Φ′(f)) where bΦ′ < bΦ.

Proof. By Lemma 2.10, there are clubs C and D1 so that for all f ∈ [D1]ε∗, Φ(f) < nextωC(bound(f, bΦ)). Let
Ξ be a Kunen function for nextωC : ω1 → ω1. Since KΞ

nextωC
∈ µ, let D2 ⊆ KΞ

nextωC
be a club subset of ω1. Let

D3 = D1 ∩D2. Thus for all f ∈ [D3]ε∗, Φ(f) < nextωC(bound(f, bΦ)) < δΞ
bound(f,bΦ). Let Φ′ : [D3]ε∗ → ω1 be

defined by Φ′(f) is the least γ < bound(f, bΦ) so that Φ(f) = Ξ(bound(f, bΦ), γ). Thus one has that for all
f ∈ [D3]ε∗, Φ(f) = Ξ(bound(f, bΦ),Φ′(f)). Also (∀∗εf)(Φ′(f) < bound(f, bΦ)) implies that bΦ′ < bΦ as long
as bΦ 6= 0. �

Definition 2.12. Let ε < ω1 and Φ : [ω1]ε∗ → ω1.
A representation for Φ is a tuple (Ξ0, ...,Ξn−1;β0, ..., βn; γ) with the following properties

(a) n ∈ ω. If n = 0, then no Ξ appears.
(b) β0 > β1 > ... > βn−1 > βn = 0 is a sequence of strictly decreasing ordinals less than or equal to ε.
γ < ω1.
(c) Each Ξi : ω1 × ω1 → ω1 is a Kunen function (for some function with respect to µ).
(c) Let Φn(f) = γ. Suppose for 0 < i ≤ n, Φi has been defined, then let Φi−1(f) = Ξi−1(bound(f, βi−1),Φi(f)).
One has that (∀∗εf)(Φ0(f) = Φ(f)).

Theorem 2.13. Let ε < ω1. Every Φ : [ω1]ε∗ → ω1 has a representation.

Proof. Let T be the tree of decreasing sequences σ = (β0, ..., βk) in ε+ 1 ordered by reverse string extension
with the property that there exists some Kunen functions Ξ0, ...,Ξk−1 and functions Φ0, ...,Φk with the
property that
(i) Φ0 = Φ.
(ii) βi = bΦi .
(iii) (∀∗εf)(Φi(f) = Ξi(bound(f, βi),Φi+1(f))) for all i < k.

The claim is that there there is some σ = (β0, ..., βn) ∈ T so that βn = 0.
To see this: Suppose not. Let σ = (β0, ..., βk) ∈ T with βk 6= 0. Let Ξ0, ...,Ξk−1 and Φ0, ...,Φk witness

that σ ∈ T . (ii) implies that bΦk = βk > 0. Lemma 2.11 implies that there is some Ξk and Φ′ so that
(∀∗εf)(Φk(f) = Ξk(bound(f, bΦk),Φ′(f))) with bΦ′ < bΦk = βk. Let Φk+1 = Φ′. Let βk+1 = bΦ′ . Let
σ′ = σˆβk+1. Then Φ0, ...,Φk+1 and Ξ0, ...,Ξk witness that σ′ ∈ T .
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It has been shown that any σ ∈ T can be extending to some σ′ ∈ T . T is a tree on ε + 1 with no dead
branches. Since ε is a wellordering, T must have an infinite branch. This is impossible since an infinite
branch is an infinite descending sequence of ordinals.

The claim has been shown. So let σ = (β0, ..., βn) ∈ T be such that βn = 0. Let Ξ0, ...,Ξn−1 and Φ0, ...,Φn
be witnesses to σ ∈ T . Since bΦn = βn = 0, one has that for µε-almost all f , bound(f, 0) = 0 ≤ Φn(f) <
f(0). So for µε-almost all f , Φn(f) is a constant function taking value some γ ∈ ω1. This implies that
(Ξ0, ...,Ξn−1;β0, ..., βn; γ) is a representation of Φ. �

The theorem implies a µε-almost everywhere continuity result for function Φ : [ω1]ε∗ → ω1.

Theorem 2.14. Let ε < ω1 and Φ : [ω1]ε∗ → ω1. Then there is a decreasing sequence of ordinals which are
less than or equal to ε, (βi : i ≤ n), with βn = 0 and a club C ⊆ ω1 so that for any f, g ∈ [C]ε∗ with the
property that bound(f, βi) = bound(g, βi) for all i ≤ n, then Φ(f) = Φ(g).

The following is an even coarser form of continuity:

Theorem 2.15. Let ε < ω1 and Φ : [ω1]ε∗ → ω1. Then there is a δ < ε and some club C ⊆ ω1 so that for all
f, g ∈ [C]ε∗ with f � δ = g � δ and sup(f) = sup(g), Φ(f) = Φ(g).

Proof. If n = 0, then Φ is a constant function so this immediately true. If n = 1, then let δ = β0 if β0 < ε
and δ = 0 if β0 = ε. If n > 1, then let δ = β1. �

Woodin [14] has observed the conclusion of the next theorem at least under ZF + DC + ADR or ZF + AD+.
The following gives a combinatorial proof in AD.

Theorem 2.16. |[ω1]ω| < |[ω1]<ω1 |.

Proof. Observe that [ω1]ω∗ ≈ [ω1]ω and [ω1]<ω1
∗ ≈ [ω1]<ω1 . So suppose there is an injection Σ : [ω1]<ω1

∗ →
[ω1]ω∗ .

For each ε < ω1 and n ∈ ω, let Σεn : [ω1]ε∗ → ω1 be defined by Σεn(f) = Σ(f)(n). By Theorem 2.15, there
is some δεn < ε so that there is some C ⊆ ω1 club with the property that for all f, g ∈ [C]ε∗, sup(f) = sup(g)
and f � δεn = g � δεn implies that Σεn(f) = Σεn(g).

For each n ∈ ω, define Λn : ω1 → ω1 by Λn(ε) = δεn. Each Λn is a regressive function. Therefore, using

ACR
ω, let Cn and δn be such that for all ε ∈ Cn, Λn(ε) = δn. Let C =

⋂
n∈ω Cn. Let δ = sup{δn : n ∈ ω}.

Since ω1 is regular, δ < ω1.
Now let ε > δ be some limit ordinal with ε ∈ C. Using ACR

ω, let Dn ⊆ ω1 be clubs so that for all
f, g ∈ [Dn]ε∗, sup(f) = sup(g) and f � δεn = g � δεn imply that Σεn(f) = Σεn(g). Let D =

⋂
n∈ωDn.

Now pick f, g ∈ [D]ε∗ so that f � δ = g � δ, sup(f) = sup(g), and f 6= g. Since for all n ∈ ω, δ ≥ δn = δεn
and ε ∈ C, one has that Σ(f) = Σ(g). This contradicts Σ being an injection. �

3. Continuity of Short Functions on ω2

First, one will review the notations and basic tools needed to analyze ω2 under AD. See [1] Section 5 and
6 for more details and the proofs of the following results.

Let µ denote the club filter on ω1. An important application of the Kunen function for functions f : ω1 →
ω1 is the existence of a uniform procedure to select representative of the ultrapower

∏
ω1
ω1/µ.

Fact 3.1. Let µ be the club measure on ω1. Suppose f : ω1 → ω1 and possesses a Kunen function Ξ with
respect to µ. Suppose G ∈

∏
α∈ω1

f(α)/µ. Then there is a β < ω1 so that [Ξβ ]µ = G

As a consequence, one can show that
∏
ω1
ω1/µ is wellfounded even without DCR.

Fact 3.2. Let f : ω1 → ω1 and possesses a Kunen function Ξ with respect to µ. Then
∏
α∈ω1

f(α)/µ, i.e.

the initial segment of
∏
ω1
ω1/µ determined by [f ]µ, is a wellordering.∏

ω1
ω1/µ is wellfounded.

For each F ∈
∏
ω1
ω1/µ, F < ω2. Thus

∏
ω1
ω1/µ ≤ ω2.

Fact 3.3. (Martin) Assume just ZF. Let κ be a strong partition cardinal.
If ν is a measure on κ, then

∏
κ κ/ν is a cardinal.

If ν is a normal κ-complete measure on κ, then
∏
κ κ/ν is a regular cardinal.
7



Corollary 3.4. (Martin) Let µ be the club measure on ω1. ω2 =
∏
ω1
ω1/µ and ω2 is a regular cardinal.

Definition 3.5. Let µ be the club measure on ω1. Let h : ω1 → ω1. Suppose h possesses a Kunen function
Ξ with respect to µ. An ordinal β < ω1 is a minimal code (relative to Ξ) if and only if for all γ < β,
¬(Ξγ =µ Ξβ). Let J be the collection of β which are minimal codes and Ξβ <µ h. Define an ordering ≺
on J by α ≺ β if and only if Ξα <µ Ξβ . By Fact 3.1, for every G < [h]µ, there is a unique β ∈ J so that
Ξβ ∈ G (i.e. [Ξβ ]µ = G). In this way, one says that β is a minimal code for G or for any g ∈ G with
respect to Ξ. Thus (J,≺) has the same ordertype as [h]µ. By Fact 3.2, [h]µ is a wellordering. Let ε ∈ ON
denote the ordertype of ([h]µ, <) which is equal to the ordertype of (J,≺). Let π : ε→ (J,≺) be the unique
order-preserving isomorphism.

Note that the objects J , ≺, ε, and π depend on Ξ and h. However, within this section, one will only work
with a single Ξ and h at a given time. It should be clear in context that these object depend on this fixed
Ξ and h.

Definition 3.6. Let µ be the club measure on ω1. Let h : ω1 → ω1 be a function so that h(α) > 0 µ-almost
everywhere. Let Ξ be a Kunen function for h with respect to µ. Let ε = [h]µ = ot(J,≺) which are defined
relative to Ξ and h.

Let Th = {(α, β) ∈ ω1 × ω1 : β < h(α)}. Let T h = (Th,@) where @ is the lexicographic ordering. Note
that ot(T h) = ω1.

Suppose F : T h → ω1 is an order-preserving function. Let g ∈ ω1 → ω1 be such that g <µ h. Let
Ag = {α : g(α) < h(α)}. Let F g : ω1 → ω1 be defined by

F g(α) =

{
F (α, g(α)) α ∈ Ag

F (α, 0) otherwise

Note that if g1 <µ g2 <µ h, then F g1 <µ F
g2 .

If β ∈ ε, then let F (β) = FΞπ(β)

. Let funct(F ) : ε→ ON be defined by funct(F )(α) = [F (α)]µ.

Fact 3.7. Let µ be the club measure on ω1. Let h : ω1 → ω1 be a function possessing a Kunen function

Ξ with respect to µ. Suppose F0, F1 ∈ [ω1]T
h

have the property that F
(β)
0 =µ F

(β)
1 for all β < ε. Then for

µ-almost all α, F0(α, β) = F1(α, β) for all β < h(α).

Suppose ε < ω2 and F : ε → ω2. Let h : ω1 → ω1 be such that [h]µ = ε. Let Ξ be a Kunen function
for h. Via a “sliding argument”, one can find an increasing function F : T h → ω1 so that for all β < ε,
[F (β)]µ = F(β). Hence one can study functions F : ε→ ω2 by using the strong partition property of ω1 on

partitions of functions in [ω1]T
h

∗ . See [1] Section 5 on the statement of the sliding lemma and how it can be
used to prove the following results:

Theorem 3.8. (Martin-Paris) Let µ be the club measure on ω1. Then for all α < ω2, the partition relation
ω2 → (ω2)α2 holds. That is, ω2 is a weak partition cardinal.

As a consequence of the weak partition property on ω1, one can completely characterize the normal
measures on ω2.

Corollary 3.9. Let Wω2
ω and Wω2

2 denote the ω-club and ω1-club filter, respectively.
Wω2
ω and Wω2

ω1
are the only two ω2-complete normal ultrafilter on ω2.

The next two results show that club subsets and ω-club subsets of ω2 are lift (in a certain sense) of some
club subsets of ω1.

Fact 3.10. Let µ be the club measure on ω1. If C ⊆ ω1 is a club subset of ω1, then [C]ω1/µ is a club subset
of ω2.

If D ⊆ ω2 is club, then there is a club C ⊆ ω1 so that [C]ω1/µ ⊆ D.

Fact 3.11. Let µ be the club measure on ω1. Let C ⊆ ω1 be a club. Then [C]ω1
∗ /µ is an ω-club subset.

Moreover, for every ω-club D ⊆ ω2, there is a club C ⊆ ω1 so that [C]ω1
∗ /µ ⊆ D.

Fact 3.12. Let µ denote the club measure on ω1. Let C ⊆ ω1 be club. Let B = [C]ω1
∗ /µ which is an ω-club

subset of ω2.
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Let ε < ω2. Let h : ω1 → ω1 with h(α) > 0 for all α < ω1 and [h]µ = ε. Let Ξ be a Kunen function for h.

Let F ∈ [B]ε∗ (be of correct type). Then there is an F ∈ [C]T
h

∗ so that for all α < ε, [F (α)]µ = F(α).

Definition 3.13. Let µ denote the club measure on ω1. Let ν = Wω2
ω denote the ω-club measure on ω2.

Let ε < ω2. Define νε as follows: for all A ⊆ [ω2]ε∗, A ∈ νε if and only if there is a ω-club B ⊆ ω2 so that
[B]ε∗ ⊆ A. νε is an ω2-complete measure on [ω2]ε∗ by the weak partition property of ω2.

Let F ∈ [ω2]ε∗. For β ≤ ε, let bound(F , β) = sup{F(α) : α < β}.
Let Φ : [ω2]ε∗ → ω2. Let bΦ be defined so that for νε-almost all F ∈ [ω2]ε∗, bΦ is the largest γ ≤ ε so that

Φ(F) ≥ bound(F , γ).
Let h ∈ ω1 → ω1 with h(α) > 0 be such that [h]µ = ε. Let Ξ be a Kunen function for h with respect to µ.

Suppose F ∈ [ω1]T
h

∗ and β ≤ ε. Define Boundβ(F )(γ) = sup{F (α)(γ) : α < β}. Note that although β
may be uncountable, for each γ, this is a supremum of a set containing at most |h(γ)| = ℵ0 many elements.

For the next several results, assume the setting of Definition 3.13.

The next results states that if F ∈ [ω2]ε∗ and F ∈ [ω1]T
h

∗ is a lifted representation of F , then Boundβ(F )
is a lifted representation of bound(F , β).

Fact 3.14. Let β ≤ ε. Let F ∈ [ω2]ε∗. Let F ∈ [ω1]T
h

∗ be such that for all α < ε, [F (α)]µ = F(α). Then
bound(F , β) = [Boundβ(F )]µ.

Proof. First observe that for any F , there is an F with the above property by Fact 3.12.
Let δ < bound(F , β). Then there is some γ < β so that δ < F(γ). So δ < [F (γ)]µ. Hence δ <

[Boundβ(F )]µ.
Now suppose that δ < [Boundβ ]µ. Let ` : ω1 → ω1 be such that [`]µ = δ. Then for µ-almost all γ,

`(γ) < sup{F (α)(γ) : α < β}. Therefore, for µ-almost all γ, there is a ζ < h(γ) and, in fact, if β < ε, there is
a ζ < Ξπ(β)(γ) so that `(γ) < F (γ, ζ). Let ι : ω1 → ω1 be defined so that for the set of µ-almost all γ with the
previous property, ι(γ) is the least such ζ with `(γ) < F (γ, ζ). There is some ρ < β so that ι =µ Ξπ(ρ). Thus

` <µ F
ι =µ F

Ξπ(ρ)

= F (ρ). Hence δ < F(ρ) where ρ < β. This shows that [Boundβ ]µ < bound(F , β). �

Definition 3.15. Let β ≤ ε. Let C ⊆ ω1 be a club subset of ω1.

For each F ∈ [ω1]T
h

∗ , define Fnextβ,C(F )(α) = nextωC(Boundβ(F )(α)).

Using either Fact 3.7 or Fact 3.14, if F0, F1 ∈ [ω1]T
h

∗ have the property that for all β ≤ ε, F
(β)
0 =µ F

(β)
1 ,

then Fnextβ,C(F0) =µ Fnextβ,C(F1).

Therefore the following is well defined: if F ∈ [ω2]ε∗, let fnextβ,C(F) = [Fnextβ,C(F )]µ, for any F ∈ [ω1]T
h

∗
such that for all α < ε, [F (α)]µ = F(α).

Lemma 3.16. Assume the setting of Definition 3.13. There is a club C ⊆ ω1 and an ω-club B ⊆ ω2 so that
for all F ∈ [B]ε∗, Φ(F) < fnextbΦ,C(F).

Proof. For each α < ω1, one will define a wellordering Lα: Let ∗α be a distinct new object. The underlying
domain of Lα is h(α) ∪ {∗α}.

First assume bΦ < ε. Define the linear ordering ≺α by x ≺α y if and only if
(a) x, y ∈ h(α) and x < y.
(b) x = ∗α and y ∈ h(α), and y ≥ Ξπ(bΦ)(α).
(c) x ∈ h(α), y = ∗α, and x < Ξπ(bΦ)(α).

If bΦ = ε, then define x ≺α y if and only if
(a) x, y ∈ h(α) ∧ x < y.
(b) x ∈ h(α) and y = ∗α.

Let L = (L,≺) be a linear ordering on L = {(α, x) : α ∈ ω1 ∧ x ∈ Lα} where ≺ is the lexicographic
ordering on L with ≺α on the αth-coordinate. Note that L has ordertype ω1.

In the case the bΦ = ε, let h̃ = h(α) + 1. By initially choosing Ξ large enough, one may assume that Ξ is

also a Kunen function for h̃ with respect to µ. Note that L is order isomorphic to T h̃.

Suppose K ∈ [ω1]L∗ . Define main(K) : [ω1]T
h → ω1 by main(K)(α, β) = K(α, β). Define extra(K) : ω1 →

ω1 by extra(K)(α) = K(α, ∗α).
Let P : [ω1]L → 2 be defined by P (K) = 0⇔ Φ(funct(main(K))) < [extra(K)]µ. By ω1 →∗ (ω1)ω1

2 , there
is a club C ⊆ ω1 which is homogeneous for P .
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Claim 1: C is homogeneous for P taking value 0.
By definition of bΦ, there is an ω-club B′ ⊆ ω2 so that all F ∈ [B]ε∗, bΦ is the largest γ ≤ ε so that

Φ(F) ≥ bound(F , γ). By Fact 3.14, there is a club C ′ so that [C ′]ω1
∗ /µ ⊆ B. By intersecting with C ′, assume

that C ⊆ C ′.
(Case I) bΦ < ε.
Let D = {α ∈ C : enumC(α) = α} be the closure points of C. Let B = [D]ω1

∗ . Pick any F ∈ [B]ε∗.

By Fact 3.12, there is some F ∈ [D]T
h

∗ so that for all α < ε, [F (α)]µ = F(α). Let f : ω1 → ω1 be
such that [f ]µ = Φ(F). By Fact 3.14, bound(F , bΦ) = [BoundbΦ(F )]µ. Since bΦ is the least γ so that

Φ(F) ≥ bound(F , γ), one has that the set A of α’s so that BoundbΦ
(F )(α) ≤ f(α) < F (bΦ)(α) belongs to µ.

Define K ∈ [C]L∗ by

K(α, z) =


F (α, z) z ∈ h(α)

nextωC(f(α)) α ∈ A ∧ z = ∗α
nextωC(BoundbΦ

(F )(α)) α /∈ A ∧ z = ∗α
.

Note that since F (α,Ξπ(bΦ)) ∈ D, K(α, ∗α) < K(α,Ξπ(bΦ)) for all α. Thus K : L → C is indeed an
increasing function. Since F is a function of the correct type, one can check that K is also of the correct
type.

Note that main(K) = F and for µ-almost all α, extra(K)(α) = nextωC(f(α)) > f(α). Thus Φ(funct(main(K))) =
Φ(F) = [f ]µ < [extra(K)]µ. Thus P (K) = 0. However since C is homogeneous for P and K ∈ [C]L∗ , one has
that C is homogeneous for P taking value 0.

(Case II) bΦ = ε.
Let B = [C]ω1

∗ . Pick any F ∈ [B]ε∗. Let f : ω1 → ω1 be such that [f ]µ = Φ(F). Let g(α) = nextωC(f(α)).
Let G ∈ [B]ε+1

∗ be defined by

G(α) =

{
F(α) α < ε

[g]µ α = ε

By Fact 3.12, there is some K ∈ [C]T
h̃

∗ = [C]L∗ so that for all α < ε+ 1, K(α) = G(α).
Then one has that Φ(funct(main(K))) = Φ(F) = [f ]µ < [g]µ = [extra(K)]µ. Thus P (K) = 0. Since

K ∈ [C]L∗ , C is homogeneous for P taking value 0.
The claim has now been established.
Let D = {α ∈ C : enumC(α) = α}. Let B = [D]ω1

∗ . Now suppose F ∈ [B]ε∗. By Fact 3.12, pick any

F ∈ [D]T
h

∗ so that for all α < ε, [F (α)]µ = F(α). Now define K ∈ [C]L∗ by

K(α, z) =

{
F (α, z) z ∈ h(α)

nextωC(BoundbΦ
(F )(α)) z = ∗α

.

Since C is homogeneous for P taking value 0, one has P (K) = 0. This implies Φ(F) = Φ(funct(main(K))) <
[extra(K)]µ = [FnextbΦ,C(F )]µ = fnextbΦ,C(F). This completes the proof. �

Definition 3.17. Suppose Σ : ω1 × ω1 → ω1.
Suppose f0 : ω1 → ω1 and f1 : ω1 → ω1. Let vf0,f1

: ω1 → ω1 be defined by vf0,f1
(α) = Σ(f0(α), f1(α)).

Note that if f ′0 =µ f0 and f ′1 =µ f1, then vf0,f1 =µ vf ′
0,f

′
1
.

Therefore, define Σ̂ : ω2×ω2 → ω2 by Σ̂(α, β) = [vfα,fβ ]µ, where fα, fβ : ω1 → ω1 are such that [fα]µ = α
and [fβ ]µ = β.

Lemma 3.18. Suppose bΦ > 0. Then there is a Kunen function Σ : ω1 × ω1 → ω1 and a function
Φ′ : [ω2]ε∗ → ω2 so that for νε-almost all F , Φ(F) = Σ̂(bound(F , bΦ),Φ′(F)) where bΦ′ < bΦ.

Proof. Let B ⊆ ω2 be the ω-club and C ⊆ ω1 be the club from Lemma 3.16.

Pick any F ∈ [B]ε∗. Let F ∈ [ω1]T
h

∗ be so that for all α < ω1, [F (α)]µ = F(α). Let f : ω1 → ω1 be such
that [f ]µ = Φ(F). By Lemma 3.16, for µ-almost all α, f(α) < nextωC(BoundbΦ

(F )(α)). Let Σ : ω1×ω1 → ω1

be a Kunen function for nextωC . For µ-almost all α, let vf,F (α) be the least γ < BoundbΦ
(F )(α) so that

f(α) = Σ(BoundbΦ
(F )(α), γ). Observe that if g =µ f and G ∈ [ω1]T

h

is such that G(α) =µ F (α) for
all α < ε, then vf,F =µ vg,F . Therefore, define Φ′(F) = [vf,F ]µ. Note by construction, Φ(F) = [f ]µ =
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Σ̂(bound(F , bΦ), [vf,F ]µ) = Σ̂(bound(F , bΦ),Φ′(F)). Since Φ′(F) < bound(F , bΦ), one has that bΦ′ < bΦ if
bΦ > 0. �

Definition 3.19. Let ε < ω2 and Φ : [ω2]ε∗ → ω2.
A representation for Φ is a tuple (Ξ0, ...,Ξn−1;β0, ..., βn; γ) with the following properties

(a) n ∈ ω. If n = 0, then no Ξ appears.
(b) β0 > β1 > ... > βn−1 > βn = 0 is a sequence of strictly decreasing ordinals less than or equal to ε.
γ < ω2.
(c) Each Ξi : ω1 × ω1 → ω1.

(d) Let Φn(F) = γ. Suppose for 0 < i ≤ n, Φi has been defined, then let Φi−1(F) = Ξ̂i(bound(F , βi−1),Φi(F)).
One has that for νε-almost all F , Φ0(F) = Φ(F).

Theorem 3.20. Let ε < ω2. Every Φ : [ω2]ε∗ → ω2 has a representation.

Proof. The proof is analogous to the proof of Theorem 2.13 using the ω2 version of the analogous lemmas. �

Now one has the analogous continuity result for functions Φ : [ω2]ε∗ → ω2 where ε < ω2.

Theorem 3.21. Let ε < ω2 and Φ : [ω2]ε∗ → ω2. Then there is a decreasing sequence of ordinals less than
or equal to ε, (βi : i ≤ n), with βn = 0 and an ω-club B ⊆ ω2 so that for any F ,G ∈ [B]ε∗ with the property
that bound(F , βi) = bound(G, βi) for all i ≤ n, then Φ(F) = Φ(G).

Theorem 3.22. Let ε < ω2 and Φ : [ω2]ε∗ → ω2. Then there is a δ < ε and an ω-club B ⊆ ω2 so that for all
F ,G ∈ [B]ε∗ with F � δ = G � δ and sup(F) = sup(G), Φ(F) = Φ(G).

Now one has some new cardinality results:

Theorem 3.23. |[ω2]ω| < |[ω2]<ω1 |.

Proof. Suppose Φ : [ω2]<ω1
∗ → [ω2]ω∗ is a function. For each ε < ω1 and each n ∈ ω, let Φεn : [ω2]ε∗ → ω2

be defined be Φεn(F) = Φ(F)(n). By Theorem 3.22, there is some δ < ε so that Φεn(F) = Φεn(G) for νε-
almost all F and G so that F � δ = G � δ and sup(F) = sup(G). Let δεn be the least such δ. The function

Λn : ω1 → ω1 defined by Λn(ε) = δεn is a regressive function. Using ACR
ω, there is a δn < ω1 and An ∈ µ

so that for all ε ∈ An, Λn(ε) = δn. Let A =
⋂
n∈ω An ∈ µ and δ = supn∈ω δn < ω1. Pick a limit ordinal

ε ∈ A with ε > δ. By ACR
ω, let Bn be an ω-club subset of ω2 so that for all F ,G ∈ [Bn]ε∗, if sup(F) = sup(G)

and F � δn = G � δn, then Φεn(F) = Φεn(G). Since ν is ω2-complete, B =
⋂
n∈ω Bn ∈ ν. Thus pick some

F ,G ∈ [B]ε∗ with F 6= G, sup(F) = sup(G), and F � δ = G � δ. Then for all n ∈ ω, Φεn(F) = Φεn(G). So
Φ(F) = Φ(G). Φ can not be an injection. �

Theorem 3.24. |[ω2]<ω1 | < |[ω2]ω1 |.

Proof. Let Φ : [ω2]ω1
∗ → [ω2]<ω1

∗ be a function. Let Ψ : [ω2]ω1
∗ → ω1 be length ◦ Φ, where length(F) = ε if

F : ε→ ω2. Since ν is ω2-complete, there is a B ∈ ν and an ε < ω1 so that for all F ∈ [B]ω1
∗ , Ψ(F) = ε. In

other words, for all F ∈ [B]ω1
∗ , Φ(F) ∈ [ω2]ε∗.

Let α < ε. Let Φα(F) = Φ(F)(α). By Theorem 3.22 and ACR
ω, there are δα < ω1 and ω-club Bα ⊆ ω2 so

that for all F ,G ∈ [Bα]ω1
∗ , if F � δα = G � δα and sup(F) = sup(G), then Φα(F) = Φα(G).

Now let U =
⋂
α<εBα ∈ ν since ν is ω2-complete. Let δ = sup{δα : α < ε}. Note that δ < ω1 since ω1

is regular. Pick F ,G ∈ [U ]ω1
∗ with F 6= G, F � δ = G � δ, sup(F) = sup(G). Since F ,G ∈ [B]ω1

∗ , Φ(F) and
Φ(G) both have length ε. By choice, Φ(F)(α) = Φα(F) = Φα(G) = Φ(G)(α) for all α < ε. So Φ(F) = Φ(G).
Φ is not an injection. �

Previously, one only needed ACR
ω to make a countable selection of subsets of ω1 or ω2. For the next

theorem, one will need to make an ω1-length selection of club subset of ω1. The following fact ensures this
can be done.

Fact 3.25. ([1] Section 4) Let 〈Aα : α < ω1〉 be such that each Aα is a nonempty ⊆-downward closed
collection of clubs subsets of ω1. Then there is a sequence 〈Cα : α < ω1〉 with each Cα ⊆ ω1 a club subset of
ω1 and Cα ∈ Aα.

Theorem 3.26. |[ω2]ω1 | < |[ω2]<ω2 |.
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Proof. Let Φ : [ω2]<ω2
∗ → [ω2]ω1

∗ be a function. For each ε < ω2 and α < ω1, let Φεα : [ω2]ε∗ → ω2 be defined
by Φεα(F) = Φ(F)(α). By Theorem 3.22, there is a minimal δεα < ε so that for νε-almost all F ,G ∈ [ω2]ε∗, if
F � δεα = G � δεα and sup(F) = sup(G), then Φεα(F) = Φεα(G).

For each α < ω1, let Λα : ω2 → ω2 be defined by Λα(ε) = δεα. Since ν is a normal measure on ω2 and
Λα is a regressive function, there is a minimal δα < ω2 so that for ν-almost all ε, Λα(ε) = δα. By Fact 3.11,
for every B ∈ ν, there is a C ⊆ ω1 club so that [C]ω1

∗ /µ ⊆ B. Let Aα be the collection of all club C ⊆ ω1

so that for all ε ∈ [C]ω1
∗ /µ, Λα(ε) = δα. Aα is clearly ⊆-downward closed. Apply Fact 3.25 to obtain a

sequence 〈Cα : α < ω1〉 so that Cα ∈ Aα. Let B =
⋂
α<ω1

[Cα]ω1
∗ /µ which belong to ν as ν is ω2-complete.

Let δ = sup{δα : α < ω1} < ω2 since ω2 is regular. Now pick a limit ordinal ε > δ with ε ∈ B.
For α < ω1, let A′α be the collection of club C ⊆ ω1 so that if D = [C]ω1

∗ /µ, then D has the property that
for all F ,G ∈ [D]ε∗, if F � δα = G � δα and sup(F) = sup(G), then Φεα(F) = Φεα(G). A′α is a ⊆-downward
closed nonempty collection of club subsets of ω1. Apply Fact 3.25 to obtain a collection 〈C ′α : α < ω1〉 of
club subsets of ω1 with the property that for all α < ω1, C ′α ∈ A′α. Let B′ =

⋂
α<ω1

[C ′α]ω∗ /µ which belongs

to ν since ν is ω2-complete. Now pick F ,G ∈ [B′]ε∗ with F � δ = G � δ, sup(F) = sup(G), and F 6= G. Note
that for all α < ω1, Φ(F)(α) = Φεα(F) = Φεα(G) = Φ(G)(α). Thus Φ(F) = Φ(G). Φ is not an injection. �

Theorem 3.27. |[ω2]ω| < |[ω2]<ω1 | < |[ω2]ω1 | < |[ω2]<ω2 |.

Proof. Given the previous theorems, one needs only to show that the appriopriate injections exists. The
only one that is not immediately clear is the injection from [ω2]<ω1 into [ω2]ω1 .

Let add : ω2 × [ω2]<ω1 → [ω2]<ω1 be defined by if F ∈ [ω2]ε for some ε < ω1, then add(λ,F) ∈ [ω2]ε be
defined by add(λ,F)(α) = λ+ F(α).

If F ∈ [ω2]<ω1 , then let fill(F) ∈ [ω2]ω1 is defined by appending onto F the next ω1-many ordinals after
sup(F).

Let Φ : [ω2]<ω1 → [ω2]ω1 be defined by Φ(F) = fill(length(F )̂ add(length(F),F)). In words, Φ(F) starts
with length(F), then shifts up all the values of F by length(F), and fill in the rest with successive ordinals
until one reaches length ω1. One can check that Φ is an injection. �

Fact 3.28. ω2 does not inject into [ω1]ω1 . Thus [ω2]ω does not inject into [ω1]ω1 .

Proof. This is a consequence of the measurability of ω2 in the same way the fact that there are no uncountable
wellordered sequences of reals follows from the measurability of ω1. The details follow:

Let ν be an ω2-complete measure on ω2. Suppose 〈fα : α < ω2〉 is an injection of ω2 into [ω1]ω1 . Let
Fα = rang(fα). Then 〈Fα : α < ω2〉 is an ω2-sequence of distinct subsets of ω1.

For each β < ω1, let A0
β = {α < ω2 : β /∈ Fα} and A1

β = {α < ω2 : β ∈ Fα}. Since µ is a measure, there

is some iβ ∈ 2 so that A
iβ
β ∈ ν.

By the ω2-completeness of ν,
⋂
β∈ω1

A
iβ
β ∈ ν. Let α0, α1 ∈

⋂
β∈ω1

A
iβ
β . Let F ⊆ ω1 be defined β ∈ F ⇔

iβ = 1. Then Fα = Fβ = F . This contradicts the fact that 〈Fα : α < ω2〉 is a sequence of distinct subsets of
ω1. �

Like the original argument for the cardinal relation |[ω1]ω| < |[ω1]<ω1 |, the argument that [ω1]<ω1 does
not inject into [ω2]ω passes through the set S1 using ∞-Borel code and forcing arguments. This originally
was proved under ZF + AD+. The following gives a purely descriptive set theoretic proof using just AD.

Theorem 3.29. ¬(|[ω1]<ω1 | ≤ |[ω2]ω|). Thus ¬(|[ω1]ω1 | ≤ [ω2]ω).

Proof. Suppose Φ : [ω1]<ω1 → [ω2]ω is an injection.
For each ε < ω1 and f ∈ [ω1]ω1 , let tail(f, ε) ∈ [ω1]ω1 be defined by tail(f, ε)(β) = f(ε+ β). Note that for

all ε < ω1 and f ∈ [ω1]ω1 , f = (f � ε)̂ tail(f, ε). Let µ denote the club measure on ω1.
For each ε < ω1, let Pε : [ω1]ω1

∗ → 2 by defined by Pε(f) = 0 if and only if sup(Φ(f � ε)) < [tail(f, ε)]µ.
(Recall that

∏
ω1
ω1/µ = ω2.)

Let C ⊆ ω1 be a club which is homogeneous for Pε. The claim is that C is homogeneous for Pε taking value
0. Suppose otherwise, then pick any σ ∈ [C]ε∗. For any g ∈ [C]ω1

∗ with min(g) > sup(σ), define σg ∈ [C]ω1
∗

by σ ĝ. Then P (σg) = 1 implies that [g]µ = tail(σg, ε) ≤ sup(Φ(σg � ε)) = sup(Φ(σ)). This impossible since
σ is fixed, [C]ω1/µ = ω2, and g can be any member of [C]ω1

∗ with min(g) > sup(σ).
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It has been shown that C is homogeneous for Pε taking value 0. Let ` ∈ [C]ω1
∗ and let β = [`]µ. Note

that for all ε < ω1, ` =µ tail(`, ε). Let σ ∈ [C]ε∗. Let γσ be the least γ so that `(γ) > sup(σ). Define
fσ = σ t̂ail(f, γσ). Note that fσ ∈ [C]ω1

∗ . Thus Pε(fσ) = 0 implies that sup(Φ(σ)) = sup(Φ(fσ � ε)) <
[tail(fσ, ε)]µ = [tail(`, γσ)]µ = [`]µ = β. That is, Φ maps [C]ε∗ into [β]ω.

For each ε < ω1, let βε be the least β < ω2 so that there exists a club C ⊆ ω1 with the property that for
all σ ∈ [C]ε∗, sup(Φ(σ)) < β. This defines a sequence 〈βε : ε < ω1〉. Let δ = sup{βε : ε < ω1}. Since ω2 is
regular, δ < ω2.

For ε < ω1, let Aε be the collection of clubs C ⊆ ω1 so that for all σ ∈ [C]ε∗, sup(Φ(σ)) < βε. This defines
a sequence 〈Aε : ε < ω1〉. Note that for all ε < ω1, Aε is a nonempty ⊆-downward closed collection of club
subsets of ω1. By Fact 3.25, let 〈Cε : ε < ω1〉 be a sequence so that Cε ∈ Aε for all ε ∈ ω1. So for any ε < ω1,
if σ ∈ [Cε]

ε
∗, then sup(Φ(σ)) < δ.

Note that
⋃
ε<ω1

[Cε]
ε
∗ ≈ [ω1]<ω1 . Observe that

Φ

[ ⊔
ε<ω1

[Cε]
ε
∗

]
⊆ [δ]ω.

Hence Φ induces an injection of [ω1]<ω1 into [δ]ω ≈ [ω1]ω since δ < ω2. By Theorem 2.16, this is impossible.
�

Fact 3.30. |[ω1]<ω1 | < |[ω1]ω1 |.

Proof. There is a purely descriptive set theoretic proof of this result in the flavor of the continuity argument
used throughout this paper in [4]. However, the requisite continuity property is more challenging to establish
than the analogous continuity properties in this paper. However, there is a very simple set theoretic proof
of this result:

Suppose there was an injection Φ : [ω1]ω1 → [ω1]<ω1 . Let L[Φ] |= ZFC be the Gödel constructible universe
built relative to Φ as a predicate.

Note that ωV1 is inaccessible in L[Φ]: Suppose δ < ωV1 and |P(δ)
L[Φ]|L[Φ] ≥ ωV1 . Since L[Φ] |= AC,

P(δ)
L[Φ]

is a wellorderable collection of subsets of δ of cardinality ωV1 . In the real world V , δ is a countable
ordinal and hence there is a bijection of δ with ω. Using this bijection, one can obtain an ωV1 -length sequence

of distinct reals from P(δ)
L[Φ]

. This is impossible under AD by a simple form of the argument in Fact 3.28.

Thus |P(δ)
L[Φ]|L[Φ] < ωV1 . This implies ωV1 is inaccessible in L[Φ].

Since L[Φ] |= ZFC, Cantor’s theorem assert that L[Φ] |= |[ωV1 ]ω
V
1 | = |2ωV1 | ≥ (ωV1 )+. Also since L[Φ] |=

ZFC and ωV1 is inaccessible in L[Φ], L[Φ] |= |[ωV1 ]<ω
V
1 | = |2<ωV1 | = ωV1 . By absoluteness, L[Φ] |= Φ is an

injection. It is impossible that L[Φ] thinks that Φ is an injection of 2ω
V
1 into ωV1 . �

A very similar argument can be used to show that |[ω2]<ω2 | < |[ω2]ω2 |. See [3] Section 4.

Theorem 3.31. Then ¬(|[ω1]ω1 | ≤ |[ω2]<ω1 |).

Proof. Let T = (ω1× 2,≺) where ≺ is the lexicographic ordering. (Note that ot(T ) = ω1.) If F ∈ [ω1]T∗ and
i ∈ 2, let Fi ∈ [ω1]ω1 be defined by Fi(α) = F (α, i).

Now suppose Φ : [ω1]ω1 → [ω2]<ω1 is an injection. Define a partition P : [ω1]T → 2 by P (F ) = 0 if
and only if sup(Φ(F0)) ≤ sup(Φ(F1)). Let C ⊆ ω1 be a club homogeneous subset for P . The claim is C is
homogeneous for P taking value 0.

Suppose C was homogeneous for P taking value 1. Let g0(0) = nextωC(0). Suppose gk(α) has been
defined, then let gk+1(α) = nextωC(gk(α)). Suppose gn(β) has been defined for all n ∈ ω and β < α. Then
let g0(α) = nextωC(sup{gn(β) : n ∈ ω ∧ β < α}).

For each n ∈ ω, gn ∈ [C]ω1
∗ . Define for α < ω1 and i ∈ 2, Gn(α, i) = gn+i(α). By the construction of

〈gn : n ∈ ω〉, one has that Gn ∈ [C]T∗ .
Thus one has that P (Gn) = 1 for all n ∈ ω. This implies for all n ∈ ω.

sup(Φ(gn+1)) = sup(Φ(Gn1 )) < sup(Φ(Gn0 )) = sup(Φ(gn)).

It has been shown that 〈sup(Φ(gn)) : n ∈ ω〉 is an infinite decreasing sequence of ordinals. This contradicts
the wellfoundedness of the ordinals.
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One must have that C is homogeneous for P taking value 0. For the next part, take g0, g1, and g2 from
the sequence 〈gn : n ∈ ω〉 constructed above. The important observation from above is that g0(α) < g1(α) <
g2(α) < g0(α+ 1) for all α.

For each A ∈ ω12, let hA ∈ [C]ω1
∗ be defined by hA(α) = gA(α)(α). Let HA ∈ [C]T∗ be defined by

HA(α, i) =

{
hA(α) i = 0

g2(α) i = 1
.

Note that HA
0 = hA and HA

1 = g2. P (HA) = 0 implies that sup(Φ(hA)) = sup(Φ(HA
0 )) ≤ sup(Φ(HA

1 )) =
sup(Φ(g2)). Let ζ = sup(Φ(gn)) which is some ordinal less than ω2.

Define Ψ : ω12→ [ω2]<ω1 by Ψ(A) = Φ(hA). Note that Ψ is a injection. By the above, Ψ : ω12→ [ζ]<ω1 .
Since ω12 ≈P(ω1) ≈ [ω1]ω1 , one has shown that there is an injection of [ω1]ω1 into [ζ]<ω1 ≈ [ω1]<ω1 . This
is not possible by Fact 3.30. �

For the sake of completeness, one sketches the remaining well-known cardinal relations among the sets
considered in this paper:

Fact 3.32. ¬(ω1 ≤ |R|) and ¬(|R| ≤ ω1).

Proof. By a simple form of the argument in the proof of Fact 3.28, there are no uncountable wellordered
sequences of distinct reals. That is, ω1 can not inject into R.

Under AD, R can not be wellordered. (For instance, a category argument can be used to show that a
wellordered union of meager sets is meager under AD.) Hence R can not inject into ω1. �

Fact 3.33. Let κ be an ordinal. ¬(|[ω1]ω| ≤ κ), ¬(|[ω1]ω| ≤ R), ¬(|[ω1]ω| ≤ |Rtκ|), and ¬(|[ω1]ω| ≤ |R×κ|).
Similarly, ¬(|[ω2]ω| ≤ κ), ¬(|[ω2]ω| ≤ R), ¬(|[ω2]ω| ≤ |R t κ|), and ¬(|[ω2]ω| ≤ |R× κ|).

Proof. Since R injects into [ω1]ω and R is not wellorderable, [ω1]ω is not wellorderable. So [ω1]ω can not
inject into any ordinal κ.

Let Φ : [ω1]ω → ω2. For each n ∈ ω, define Pn : [ω1]ω → 2 by Pn(f) = f(n). By ACR
ω, let Cn ⊆ ω1 be

club homogeneous for Pn taking some value in ∈ 2. Let C =
⋂
n∈ω Cn. Let r ∈ ω2 by r(n) = in. Note that

for all Φ[[C]ω∗ ] = {r}. Thus Φ is not an injection.
Now suppose Φ : [ω1]ω → κ t R. Define Q : [ω1]ω → 2 by

Q(f) =

{
0 Φ(f) ∈ κ
1 Φ(f) ∈ R

Let C ⊆ ω1 be club homogeneous for Q. If C is homogeneous for Q taking value 0, then Φ maps [C]ω∗ into κ.
By the earlier argument, Φ can not be an injection. If C is homogeneous for Q taking value 1, the Φ maps
[C]ω∗ into R. Again by the earlier argument, Φ can not be an injection.

Suppose Φ : [ω1]ω → R × ω1. Let π1 : R × ω1 → R be the projection onto the first coordinate. Then
π1 ◦Φ : [ω1]ω1 → R. By the argument above, there is a club C ⊆ ω1 and an r ∈ R so that (π ◦Φ)[[C]ω∗ ] = {r}.
Then Φ : [C]ω∗ → {r} × ω1. Since {r} × ω1 is in bijection with ω1, Φ can not be an injection by the earlier
part of this proof.

The result for [ω2]ω follows by the same argument using the weak partition property for ω2. �

The cardinal relations displayed in the diagram from the introduction follow from the work so far.

4. [ω1]ω is Jónsson

Definition 4.1. Let X be a set. Define [X]n= = {f ∈ nX : (∀i < j < n)(f(i) 6= f(j))}. Let [X]<ω= =⋃
n∈ω[X]n=.
For n < ω, X is n-Jónsson if and only if for every Φ : [X]n= → X, there is some Z ⊆ X with Z ≈ X so

that Φ[[Z]n=] 6= X.
X is Jónsson if and only if for all Φ : [X]<ω= → X, there is some Z ⊆ X with Z ≈ X so that Φ[[X]<ω= ] 6= X.
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Definition 4.2. Let f̄ ∈ <ω([ω1]ω). The tuple-type of f̄ , denoted type(f̄), is a 4-tuple (n,m,G,D) with the
following properties:
(1) n is the length of the tuple f̄ .
(2) Let S = {sup(fi) : i < n}. Then m = |S|.

Let rang(f̄) =
⋃
i<n rang(fi). Note that m also has the property that ot(rang(f̄)) = ω · m. Let

〈a0, ..., am−1〉 be the increasing enumeration of S. Let F : ω · m → rang(f̄) be the increasing enumera-
tion of rang(f̄).
(3) G : m→P(n) is defined by G(i) = {k ∈ n : sup(fk) = ai}.
(4) Let D : ω ·m→P(n) be defined by D(α) = {i ∈ n : F (α) ∈ rang(fi)}.

If Z ⊆ [ω1]ω, then let type(Z) = {type(f̄) : f̄ ∈ <ωZ}.

Example 4.3. Consider f0, f1, f2 ∈ [ω1]ω defined by

f0(x) =

{
0 x = 0

x+ 1 x ≥ 1
, f1(x) =

{
x x = 0, 1

ω + 2(x− 1) x ≥ 2

f2(x) =


x x = 0, 1

ω + (x− 2) x = 2, 3

ω + 2(x− 3) + 1 x ≥ 4

The first several values of f0, f1, and f2 are the following:

f0 = 〈0, 2, 3, 4, 5, 6, 7, ...〉 f1 = 〈0, 1, ω + 2, ω + 4, ω + 6, ω + 8, ω + 10, ...〉
f2 = 〈0, 1, ω, ω + 1, ω + 3, ω + 5, ω + 7, ω + 9, ω + 11, ...〉.

The picture looks as follows: There are ω · 2 many columns. Row 0, 1, and 2 indicate which values among
ω · 2 are taken by f0, f1, and f2, respectively.

0 0 0 0 0 ... |
1 1 | 1 1 1 1 1 ...

2 2 | 2 2 2 2 2 2 ...

Then type((f0, f1, f2)) = (3, 2, G,D) where G and D are defined as follows: G : 2 → P(3) is defined by
G(0) = {0} and G(1) = {1, 2}. The function D : ω · 2→P(3) can be read off the diagram above by

D(α) =



{0, 1, 2} α = 0

{1, 2} α = 1

{0} 2 ≤ α < ω

{2} α = ω, ω + 1

{1} (∃k ∈ ω)[α = ω + 2(k + 1)]

{2} (∃k ∈ ω)[α = ω + 2(k + 1) + 1]

With Definition 4.2 as the motivation, one makes the following abstract definition of a tuple-type:

Definition 4.4. A tuple-type t is a 4-tuple (n,m,G,D) with the following properties:
(1) n ∈ ω and n > 0 which is called the length of tuple type.
(2) 1 ≤ m ≤ n which is called the arrangement number of the tuple type.
(3) G : m → P(n) with the property that for all i < m, G(i) 6= ∅,

⋃
i∈mG(i) = n, and for all i < j < m,

G(i) ∩G(j) = ∅. G is called the grouping order of the tuple-type.
(4) D : ω ·m→P(n), which is called the distribution of the type, is a function with the following properties:

(a) For each i < m and l ∈ ω,

D(ω · i+ l) ∩

⋃
j<i

G(j)

 = ∅.

(b) For each k < n, if k ∈ G(i), then {l ∈ ω : k ∈ D(ω · i+ l)} is infinite.
(c) For each k < n, if k ∈ G(i), then for each j < i, {l ∈ ω : k ∈ D(ω · j + l)} is finite.
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Observe that if f̄ ∈ <ω([ω1]ω), then the tuple-type of f̄ , type(f̄), is a tuple-type as defined in Definition
4.4.

Definition 4.5. Let t = (n,m,G,D) be a tuple-type. Let h : [ω1]ω·m → ω1. For i < n, let f t,hi be defined to
be the increasing enumeration of {h(α) : α < ω ·m ∧ i ∈ D(α)}. Note that the properties of the distibution

imply that f t,hi ∈ [ω1]ω.

Define extract(t, h) = (f t,h0 , ..., f t,hn−1). This is the n-tuple extracted from h of tuple-type t. Note that
type(extract(t, h)) = t.

Definition 4.6. Let X be any set and P : ω → X. P is eventually periodic if and only if there exists
k, p ∈ ω and x0, ..., xp−1 ∈ X so that for all n > k, P (n) = xi where i < p is such that n− k is congruent to
i mod p.

A tuple-type t = (n,m,G,D) is an eventually periodic tuple-type if and only if for each i < m, the
function Pi : ω →P(n) defined by Pi(k) = D(ω · i+ k) is eventually periodic.

Note that there are only countably many eventually periodic tuple-types.

Definition 4.7. Let L be the collection of finite tuples (α, n, β0, ..., βn) where α < ω1, n ∈ ω, β0 < β1 <
... < βn < α. Let ≺ be the lexicographic ordering on L. Let L = (L,≺). Note that ot(L) = ω1.

Let H ∈ [ω1]L, that is an order-preserving function of L into ω1.
Define ΛH : [ω1]ω → [ω1]ω by Λ(f)(k) = H(sup(f), k, f(0), ..., f(k)).

Lemma 4.8. ΛH is an injection and type(ΛH [[ω1]ω]) consists only of eventually periodic tuple-types.

Proof. Suppose f, g ∈ [ω1]ω with f 6= g.
(Case I) Suppose sup(f) 6= sup(g). Without loss of generality, suppose sup(f) < sup(g). Then ΛH(f)(0) =

H(sup(f), 0, f(0)) < H(sup(g), 0, g(0)) = ΛH(g)(0). Therefore, ΛH(f) 6= ΛH(g).
(Case II) Suppose sup(f) = sup(g). f 6= g implies that there is a least k so that f(k) 6= g(k). Without loss

of generality, suppose f(k) < g(k). Then ΛH(f)(k) = H(sup(f), k, f(0), ..., f(k)) < H(sup(g), k, g(0), ..., g(k)) =
ΛH(g)(k). So ΛH(f) 6= ΛH(g).

It has been shown that ΛH is an injection.
Now suppose f̄ = (f0, ..., fn−1) ∈ <ω([ω1]ω). Let ΛH(f̄) = (ΛH(f0), ...,ΛH(fn−1). Let type(f̄) =

(n,m,G,D). Suppose type(ΛH(f̄)) = (n′,m′, G′, D′).
For i < j < n, if sup(fi) < sup(fj), then

ΛH(fi)(a) = H(sup(fi), a, fi(0), ..., fi(a)) < H(sup(fj), b, fj(0), ..., fj(b)) = ΛH(fj)(b)

for any a, b ∈ ω. This implies that if sup(fi) < sup(fj), then sup(ΛH(fi)) < sup(ΛH(fj)). This shows that
m′ = m and G′ = G.

Pick any i < m. Let Pi(k) = D′(ω · i+ k). Pick a ` ∈ ω large enough so that for all a, b ∈ G(i), if fa 6= fb,
then there is some ι < ` so that fa(ι) 6= fb(ι).

Define an preordering v on G(i) by a v b if and only if fa � ` = fb � ` or fa � ` is lexicographically less
than fb � `. The v-preordering classes of G(i) are naturally linearly ordered. Note that Pi is eventually
periodic by repeating the v-preordering classes of G(i) in this natural order.

It has been established that type(ΛH(f̄)) is an eventually periodic tuple-type. �

Example 4.9. Let f0, f1, and f2 be the functions from Example 4.3. Let H : L → ω1 be any order-
preserving function of the correct type. Let type((f0, f1, f2)) = (3, 2, G,D). Let ΛH be the associated
function as defined above. Let type((ΛH(f0),ΛH(f1),ΛH(f2))) = (3, 2, G,D′), where D′ is defined below:

Observe that in L = (L,�), the following objects are arranged as follows:

(ω, 0, 0) ≺ (ω, 1, 0, 2) ≺ (ω, 2, 0, 2, 3) ≺ (ω, 3, 0, 2, 3, 4) ≺ ... ≺ (ω · 2, 0, 0) ≺ (ω · 2, 1, 0, 1)

≺ (ω·2, 2, 0, 1, ω) ≺ (ω·2, 2, 0, 1, ω+2) ≺ (ω·2, 3, 0, 1, ω, ω+1) ≺ (ω·2, 3, 0, 1, ω+2, ω+4) ≺ (ω·2, 4, 0, 1, ω, ω+1, ω+3)

≺ (ω · 2, 4, 0, 1, ω + 2, ω + 4, ω + 6) ≺ (ω · 2, 5, 0, 1, ω, ω + 1, ω + 3, ω + 5) ≺ ...
This implies that

ΛH(f0)(0) < ΛH(f0)(1) < ΛH(f0)(2) < ΛH(f0)(3) < ΛH(f0)(4) < ...

< ΛH(f1)(0) = ΛH(f2)(0) < ΛH(f2)(1) = ΛH(f1)(1) < ΛH(f2)(2)
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< ΛH(f1)(2) < ΛH(f2)(3) < ΛH(f1)(3) < ΛH(f2)(4) < ΛH(f1)(4) < ΛH(f2)(5)

From the example above, the diagram for D′ is given below. In his diagram, 0̂, 1̂, and 2̂ represent ΛH(f0),
ΛH(f1), and ΛH(f2):

0̂ 0̂ 0̂ 0̂ 0̂ 0̂ ... |
| 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ ...

| 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ ...

Explicitly, D′ : ω · 2→P(3) is

D′(α) =


{0} α < ω

{1, 2} α = ω, ω + 1

{2} (∃k ∈ ω)[α = ω + 2(k + 1)]

{1} (∃k ∈ ω)[α = ω + 2(k + 1) + 1]

Note that P0(k) = D′(k) is eventually periodic by repeating {0} and P1(k) = D′(ω+k) is eventually periodic
by eventually alternating between {1} and {2}.

Fact 4.10. Let Φ : <ω([ω1]ω)→ [ω1]ω be a function. Let t = (n,m,G,D) be a tuple-type. Let µ denote the
club measure on ω1. Let Φt,k : [ω1]ω·m∗ → ω1 be defined Φt,k(h) = Φ(extract(t, h))(k).

If for µω·m-almost all h, Φt,k(h) < h(0), then for µω·m-almost all h, Φt,k(h) take a constant value cΦ,tk .

Proof. This follows from the countable additivity of µω·m. �

Definition 4.11. Assume the setting of fact 4.10. Let dΦ,t be the least k if it exists so that Φt,k(h) ≥ h(0)
for µω·m-almost all h. Otherwise, let dΦ,t = ω.

Let stemΦ,t : dΦ,t → ω1 be defined by stemΦ,t(j) = cΦ,tj , where j < dΦ,t

Thus for µω·m-almost all h, stemΦ,t ⊆ Φ(extract(t, h)) and if dΦ,t < ω, then Φ(extract(Φ, t))(dΦ,t) ≥ h(0).

Theorem 4.12. [ω1]ω is Jónsson.

Proof. A slightly stronger version of the Jónsson property will be shown: Let Φ : <ω([ω1]ω)→ [ω1]ω.

Using ACR
ω and the discussion in Definition 4.11, for each (of the countably many) eventually periodic

tuple-type t, let Ct ⊆ ω1 be a club so that for all h ∈ [Ct]
ω
∗ , stemΦ,t ⊆ Φ(extract(t, h)) and if dΦ,t < ω, then

Φ(extract(Φ, t))(dΦ,t) ≥ h(0).
Let ζ be the supremum of sup(stemΦ,t) as t ranges over the countable set of eventually periodic tuple-

types. As ω1 is regular, ζ < ω1. Let C be the intersection of all Ct as t ranges over all eventually periodic
tuple-type. By removing an initial segment of C, one may assume that ζ < min(C) + 1.

Let H : L → C be any order-preserving function of the correct type. Note that ΛH(f) ∈ [ω1]ω∗ , i.e. is also
a function of the correct type for any f ∈ [ω1]ω.

Let Z = ΛH [[ω1]ω]. Since ΛH is an injection by Lemma 4.8, Z ≈ [ω1]ω.
Now suppose f̄ = (f0, ..., fn−1) ∈ <ωZ. By Lemma 4.8, t = type(f̄) = (n,m,G,D) is an eventually

periodic tuple-type. There is a unique h ∈ [C]ω·m∗ so that extract(t, h) = f̄ . In particular, since h ∈ [Ct]
ω·m
∗ ,

stemΦ,t ⊆ Φ(f̄) and if dΦ,t < ω, Φ(f̄)(dΦ,t) ≥ h(0) ≥ min(C) > ζ. This and the definition of ζ imply that
ζ /∈ rang(Φ(f̄)).

It has been shown that for all f̄ ∈ <ωZ, ζ /∈ rang(Φ(f̄)). In particular, Φ[<ωZ] 6= [ω1]ω.
As Φ was arbitrary, this implies that [ω1]ω is Jónsson. �
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